This is a key concept in epidemiology and is defined as:
“the average number of secondary cases arising from an infected individual introduced into a fully susceptible population”
S(t), St or S is the number of susceptibles
I(t), It or I is the number of infecteds
R(t), Rt or R is the number of recovereds
N is the total population size
β×I×SN
σ×I
St+1=St−β×It×(StN)
St+1=St−β×It×(StN)
It+1=It+β×It×(StN)−σ×It
St+1=St−β×It×(StN)
It+1=It+β×It×(StN)−σ×It
Rt+1=Rt+σ×It
S_{t+1} = S_t – \beta \times I_t \times \frac{S_t}{N} + \sigma \times I_t
I_{t+1} = I_t + \beta \times I_t \times \frac{S_t}{N} – \sigma \times I_t
\beta \times I \times (\frac{S}{N})
is the same as…
\beta I(\frac{S}{N})
is the same as
\frac{\beta I S}{N}
This is a key concept in epidemiology and is defined as:
“the average number of secondary cases arising from an infected individual introduced into a fully susceptible population”
\begin{align} R_0 = {} & \textrm{number of new infections per day} \\ & \textrm{arising from 1 infected in a fully} \\ & \textrm{susceptible population}\; \times \\ & \textrm{number of days infectious} \end{align}
\begin{align} R_0 = {} & \textrm{number of new infections per day} \\ & \textrm{arising from 1 infected in a fully} \\ & \textrm{susceptible population}\; \times \\ & \textrm{number of days infectious} \\ = {} & \beta \times \textrm{number of days infectious} \end{align}
Recovery rate = 0.1 per day
Infectious period = \frac{1}{0.1} = 10 days
Infectious period = 3 weeks
Recovery rate = \frac{1}{3} per week
\begin{align} R_0 = {} & \textrm{number of new infections per day} \\ & \textrm{arising from 1 infected in a fully} \\ & \textrm{susceptible population}\; \times \\ & \textrm{number of days infectious} \\ = {} & \beta \times \textrm{number of days infectious} \end{align}
\begin{align} R_0 = {} & \textrm{number of new infections per day} \\ & \textrm{arising from 1 infected in a fully} \\ & \textrm{susceptible population}\; \times \\ & \textrm{number of days infectious} \\ = {} & \beta \times \textrm{number of days infectious} \\ = {} & \beta \times \frac{1}{\textrm{recovery rate}} \end{align}
\begin{align} R_0 = {} & \textrm{number of new infections per day} \\ & \textrm{arising from 1 infected in a fully} \\ & \textrm{susceptible population}\; \times \\ & \textrm{number of days infectious} \\ = {} & \beta \times \textrm{number of days infectious} \\ = {} & \beta \times \frac{1}{\textrm{recovery rate}} \\ = {} & \beta \times \frac{1}{\sigma} = \frac{\beta}{\sigma} \end{align}
\begin{align} R_0 = {} & \textrm{number of new infections per day} \\ & \textrm{arising from 1 infected in a fully} \\ & \textrm{susceptible population}\; \times \\ & \textrm{number of days infectious} \\ = {} & \beta \times \textrm{number of days infectious} \\ = {} & \beta \times \frac{1}{\textrm{recovery rate}} \\ = {} & \beta \times \frac{1}{\sigma} = \frac{\beta}{\sigma} \\ = {} & \frac{transmission.rate}{recovery.rate} \end{align}
Infection burns itself out
Not all individuals become infected
Chain of transmission eventually halts due to insufficient susceptibles, not a complete lack of susceptibles
S_{t+1} = S_t – \beta \times I_t \times \frac{S_t}{N} + \sigma \times I_t
I_{t+1} = I_t + \beta \times I_t \times \frac{S_t}{N} – \sigma \times I_t