This is a key concept in epidemiology and is defined as:
“the average number of secondary cases arising from an infected individual introduced into a fully susceptible population”
\(S(t)\), \(S_t\) or \(S\) is the number of susceptibles
\(I(t)\), \(I_t\) or \(I\) is the number of infecteds
\(R(t)\), \(R_t\) or \(R\) is the number of recovereds
\(N\) is the total population size
\[\beta \times I \times \frac{S}{N}\]
\[\sigma \times I\]
\[S_{t+1} = S_t - \beta \times I_t \times (\frac{S_t}{N})\]
\[S_{t+1} = S_t - \beta \times I_t \times (\frac{S_t}{N})\]
\[I_{t+1} = I_t + \beta \times I_t \times (\frac{S_t}{N}) - \sigma \times I_t\]
\[S_{t+1} = S_t - \beta \times I_t \times (\frac{S_t}{N})\]
\[I_{t+1} = I_t + \beta \times I_t \times (\frac{S_t}{N}) - \sigma \times I_t\]
\[R_{t+1} = R_t + \sigma \times I_t\]
\[S_{t+1} = S_t – \beta \times I_t \times \frac{S_t}{N} + \sigma \times I_t\]
\[I_{t+1} = I_t + \beta \times I_t \times \frac{S_t}{N} – \sigma \times I_t\]
\[\beta \times I \times (\frac{S}{N})\]
is the same as…
\[\beta I(\frac{S}{N})\]
is the same as
\[\frac{\beta I S}{N}\]
This is a key concept in epidemiology and is defined as:
“the average number of secondary cases arising from an infected individual introduced into a fully susceptible population”
\[\begin{align} R_0 = {} & \textrm{number of new infections per day} \\ & \textrm{arising from 1 infected in a fully} \\ & \textrm{susceptible population}\; \times \\ & \textrm{number of days infectious} \end{align}\]
\[\begin{align} R_0 = {} & \textrm{number of new infections per day} \\ & \textrm{arising from 1 infected in a fully} \\ & \textrm{susceptible population}\; \times \\ & \textrm{number of days infectious} \\ = {} & \beta \times \textrm{number of days infectious} \end{align}\]
Recovery rate = 0.1 per day
Infectious period = \(\frac{1}{0.1}\) = 10 days
Infectious period = 3 weeks
Recovery rate = \(\frac{1}{3}\) per week
\[\begin{align} R_0 = {} & \textrm{number of new infections per day} \\ & \textrm{arising from 1 infected in a fully} \\ & \textrm{susceptible population}\; \times \\ & \textrm{number of days infectious} \\ = {} & \beta \times \textrm{number of days infectious} \end{align}\]
\[\begin{align} R_0 = {} & \textrm{number of new infections per day} \\ & \textrm{arising from 1 infected in a fully} \\ & \textrm{susceptible population}\; \times \\ & \textrm{number of days infectious} \\ = {} & \beta \times \textrm{number of days infectious} \\ = {} & \beta \times \frac{1}{\textrm{recovery rate}} \end{align}\]
\[\begin{align} R_0 = {} & \textrm{number of new infections per day} \\ & \textrm{arising from 1 infected in a fully} \\ & \textrm{susceptible population}\; \times \\ & \textrm{number of days infectious} \\ = {} & \beta \times \textrm{number of days infectious} \\ = {} & \beta \times \frac{1}{\textrm{recovery rate}} \\ = {} & \beta \times \frac{1}{\sigma} = \frac{\beta}{\sigma} \end{align}\]
\[\begin{align} R_0 = {} & \textrm{number of new infections per day} \\ & \textrm{arising from 1 infected in a fully} \\ & \textrm{susceptible population}\; \times \\ & \textrm{number of days infectious} \\ = {} & \beta \times \textrm{number of days infectious} \\ = {} & \beta \times \frac{1}{\textrm{recovery rate}} \\ = {} & \beta \times \frac{1}{\sigma} = \frac{\beta}{\sigma} \\ = {} & \frac{transmission.rate}{recovery.rate} \end{align}\]
Infection burns itself out
Not all individuals become infected
Chain of transmission eventually halts due to insufficient susceptibles, not a complete lack of susceptibles
\[S_{t+1} = S_t – \beta \times I_t \times \frac{S_t}{N} + \sigma \times I_t\]
\[I_{t+1} = I_t + \beta \times I_t \times \frac{S_t}{N} – \sigma \times I_t\]