library(lme4)
d <- read.csv("my.file.csv")
#...
#...
o1 <- lmer(d$d1 ~ d$d2 + (1|d$d3))
#...
#...
plot(d$d2, d$d1)
library(lme4)
flu.data <- read.csv("my.file.csv")
#...
#...
res <- lmer(antigenic.distance ~ num.mutation + (1 | date), data = flu.data)
#...
#...
plot(antigenic.distance ~ num.mutation, data = flu.data)
library(lme4)
flu.data <- read.csv("my.file.csv")
# Some light processing to get data into correct format
#...
#...
# Now the analyses – a linear mixed effect model
res <- lmer(antigenic.distance ~ num.mutation + (1 | date), data = flu.data)
# Checking the model is a good one
#...
#...
# Phew, it is, so plot the best explanatory and response variables!
plot(antigenic.distance ~ num.mutation, data = flu.data)
library(lme4)
### <b>
# Function to load in data from file and process
read_flu_data <- function(filename) {
#' Load in data from file and process
data <- read.csv(filename)
# Some light processing to get into correct format
#...
data
}
### </b>
flu.data <- read_flu_data("my.file.csv")
# Now the analyses – a linear mixed effect model
res <- lmer(antigenic.distance ~ num.mutation + (1 | date), data = flu.data)
# Checking the model is a good one
#...
#...
# Phew, it is, so plot the best explanatory and response variables!
plot(antigenic.distance ~ num.mutation, data = flu.data)
helper.R
# All of the helper functions for our
# experiments
library(lme4)
### <b>
read_flu_data <- function(filename) {
# Load data and process it
data <- read.csv(filename)
# Wrangle data
#...
data
}
### </b>
### <b>
check_flu_model <- function(model.out) {
# Check model
is.good.model <- #...
#...
is.good.model
}
### </b>
script.R
# Load in our generic helper functions
source("helper.R")
# Load data and process it
my.data <- read_flu_data("my.file.csv")
# Analyses - linear mixed effect model
res <- lmer(antigenic.distance ~
num.mutation +
(1 | date),
data = flu.data)
# Check model
if (!check_flu_model(res))
stop("Model is rubbish, give up now!")
# Plot the best explanatory and
# response variables
plot(antigenic.distance ~ num.mutation,
data = flu.data)