Probability and
the importance of randomness



Deterministic versus stochastic

e All the models so far have
been deterministic

 Deterministic models give
same output for the same
starting conditions

— no element of randomness
or chance
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e Stochastic models include
an element of chance

Infecteds




Interpreting rates

* Let’s consider the Interpreting 0=0.1...

recovery rate o

...if many infecteds, we are
happy that 0.1 or 10% of the
infected population will
recover per time unit

...but, if just a few infecteds,
the deterministic
interpretation implies that 0.1
of an individual could recover
(a little odd!)




Interpreting rates

e Let’s consider the
recovery rate o

Deterministic models do not
handle dynamics at the
individual level well!

Stochastic or probabilistic

models will help us capture

dynamics at the individual
level




Thinking probabilistically

* From the perspective of the individual a better
interpretation of 0=0.1 is

Each individual has a 10% chance
(a probability of 0.1)
of recovery in time interval of 1 **

** The relationship between rates and probabilities is actually slightly more complicated but this is a very good approximation for low rates.



How do we capture this?

 We can incorporate probabilities into
simulations using a random number generator



Random numbers in R

Requesting 1 random number between 0 and 1

> runif(l)

Requesting 3 random
El:r]'ug{?—g?§3163 numbers between 0 and 1

[1] 0.2868%2%//////”////
> runif(3)

[1] 0.4336072 0.8995862 0.1137983
> runif(3)
[1] 0.5798326 0.5079621 0.6202416

>

>



Using random numbers

Example: prob of recovery =0.1



Using random numbers

Example: prob of recovery =0.1

1. Pick a random number between 0 and 1 ” |
> runif(l)

0 1




Using random numbers

Example: prob of recovery =0.1

1. Pick a random number between 0 and 1 ” ,
> runif(l)

0 1

2. Ifless than 0.1, the individual recovers in this time interval
> runif(l)

[1] 0.070531

0 0.1 1



Using random numbers

Example: prob of recovery =0.1

1. Pick a random number between 0 and 1 ” .
> runif(l)

0 1

2. Ifless than 0.1, the individual recovers in this time interval
> runif(l)
[1] 0.070531

0 0.1 1

3. If greater than 0.1, the individual does not recover > runif(l)
[1] 0.286839

0 0.1 1




Using random numbers in practice

* At each time step, could repeat
procedure for each of the | infecteds

* Not the most efficient method

 Use the binomial distribution in R to
do all of the | infecteds at once



Refresher on the binomial
distribution



Pie example

* The probability that a pie is contaminated with a
bacteriumis 1in 10

— Prob(pie contaminated) =0.1



Pie example

* The probability that a pie is contaminated with a
bacteriumis 1in 10

— Prob(pie contaminated) =0.1

 What is probability that two pies selected at random
are contaminated?

Prob(both contaminated)= (0.1)? =0.1*0.1 =0.01



Pie example

* The probability that a pie is contaminated with a
bacteriumis 1in 10

— Prob(pie contaminated) =0.1

 What is probability that two pies selected at random
are not contaminated?

Prob(both uncontaminated)= (1-0.1)%2 =0.9*0.9 =0.81



Combining probabilities

Prob(neither contaminated) = (1-0.1)? = 0.81

Prob(both contaminated) =(0.1)2 =0.01

Sum of probabilities 0.82



Combining probabilities

Prob(neither contaminated) = (1-0.1)? = 0.81

Prob(one contaminated)=(1-0.1)*0.1+0.1*(1-0.1) =0.18

Prob(both contaminated) =(0.1)2 =0.01

Sum of probabilities 1.0



Combining probabilities

Prob(neither contaminated) = (1-0.1)? = 0.81

Prob(one contaminated)=2*(1-0.1)*0.1 =0.18

Prob(both contaminated) =(0.1)2 =0.01

Sum of probabilities 1.0



Combining probabilities

Prob(neither contaminated) = (1-0.1)? = 0.81

2 pies

means . . .
3 outcomes 4 Prob(one contaminated)= 2*(1-0.1)*0.1 =0.18

Prob(both contaminated) =(0.1)2 =0.01

Sum of probabilities 1.0



Probability distributions

e Suppose we looked at 10 pies each with probability
p=0.1 of being contaminated

* Now, there are 11 possible outcomes

— P(0 contaminated)= (1-0.1)0
— P(1 contaminated)= 10*0.1*(1-0.1)°
— P(2 contaminated)= ......

— P(10 contaminated)= (0.1)10

* These probabilities form a binomial distribution



Probability distributions

e Suppose we looked at 10 pies each with probability
p=0.1 of being contaminated

* Now, there are 11 possible outcomes
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No. contaminated pies in sample of 10

* These probabilities form a binomial distribution




The binomial distribution

e Shape of distribution determined by the number of
trials, n, and the probability of success, p

— a classic example is tossing a coin n times, with probability
of a head p=0.5

* For our meat pie example n=10 and p=0.1



Number of contaminated pies

* Binomial distribution for n=10, p=0.1
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Number of contaminated pies

* Binomial distribution for n=10, p=0.3
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Number of contaminated pies

* Binomial distribution for n=10, p=0.6
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Binomial distri

bution summary

>
> rbinom(1,

1 [1] 1
¢ DEfIned by > rbinom(1,
. . [1] Q
Binomial(n,p) > rbinoncs,
. > rbi 1,
— n = number of trials Sitte
> rbinom(1,
— p= i [1] ©
!o proba.blllty of success me
in each trial [1] 2
> rbinom(1,

[1] 2

> rbinom(1,

[1] ©

 Can sample from
distribution in R

— rbinom(1, 10, 0.1)
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End of refresher



Using binomial to simulate recovery
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— n=num trials
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No. of individuals recovering in time step

e To simulate recovery > signa <- 0.2
— n=1(number infecteds) |
I > Number.recovering <- rbinom(1, I, sigma)
p = o (recovery > Number . recovering
probability) [1] 1

>
> Number.recovering <- rbinom(l, I, sigma)
> Number.recovering

[1] 3

>




Same trick for transmission

* Look at the rates
— total rate of transmission is BSI/N

— the rate per susceptible is BI/N



Same trick for transmission

* Look at the rates
— total rate of transmission is BSI/N

— the rate per susceptible is BI/N

* |Interpret rate per individual as a probability
p=BI/N of infection



Using binomial to simulate transmission

* Defined by
Binomial(n,p)
— n=S (susceptibles)
— szI/N (prob of No. individuals becoming infected in time step

infection)
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 Can sample from
distribution in R

— rbinom(1, S, BI/N)



Using binomial to simulate transmission

* Defined by
Binomial(n,p)
— n=S (susceptibles)

— p=BI/N (prob of
infection)

 Can sample from
distribution in R

— rbinom(1, S, BI/N)
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> Number.getting.infected <- rbinom(1l, S, beta*I/N)
> Number.getting.infected

[1] 0

> Number.getting.infected <- rbinom(1, S, beta*I/N)
> Number.getting.infected

[1] o

> Number.getting.infected <- rbinom(1l, S, beta*I/N)
> Number.getting.infected

[1] 1

>




The impact of randomness

* Variety of outputs for
same starting conditions

— in contrast to a
deterministic model

e Extinction in outbreaks
even if Ry>1!

* Observed stochasticity
decreases when

— population size is large

— initial number of infecteds
large



