Probability and

the importance of randomness

Deterministic versus stochastic

- All the models so far have been deterministic
- Deterministic models give same output for the same starting conditions
- no element of randomness or chance
- Stochastic models include an element of chance

Time

Interpreting rates

- Let's consider the recovery rate σ

...if many infecteds, we are happy that 0.1 or 10% of the infected population will recover per time unit
...but, if just a few infecteds, the deterministic
interpretation implies that 0.1 of an individual could recover
(a little odd!)

Interpreting rates

- Let's consider the recovery rate σ

Deterministic models do not handle dynamics at the individual level well!

Stochastic or probabilistic models will help us capture dynamics at the individual level

Thinking probabilistically

- From the perspective of the individual a better interpretation of $\sigma=0.1$ is

Each individual has a 10\% chance
 (a probability of 0.1) of recovery in time interval of 1 **

How do we capture this?

- We can incorporate probabilities into simulations using a random number generator

Random numbers in R

Requesting 1 random number between 0 and 1

> runif(1)

[1] 0.07053163
> runif(1)
[1] 0.2868392
> runif(3)
[1] 0.4336072 0.89958620 .1137983
> runif(3)
[1] 0.5798326 0.5079621 0.6202416

Using random numbers

Example: prob of recovery =0.1

Using random numbers

Example: prob of recovery $=0.1$

1. Pick a random number between 0 and 1

0
1

Using random numbers

Example: prob of recovery $=0.1$

1. Pick a random number between 0 and 1

0
1
2. If less than 0.1, the individual recovers in this time interval

Using random numbers

Example: prob of recovery $=0.1$

1. Pick a random number between 0 and 1

2. If less than 0.1, the individual recovers in this time interval

runif(1)
[1] 0.070531
3. If greater than 0.1, the individual does not recover
$0 \quad 0.1$

Using random numbers in practice

- At each time step, could repeat procedure for each of the I infecteds
- Not the most efficient method
- Use the binomial distribution in R to do all of the I infecteds at once

Refresher on the binomial distribution

- The probability that a pie is contaminated with a bacterium is 1 in 10
- Prob(pie contaminated)

$$
=0.1
$$

- The probability that a pie is contaminated with a bacterium is 1 in 10
- Prob(pie contaminated) $=0.1$
- What is probability that two pies selected at random are contaminated?
$\operatorname{Prob}($ both contaminated $)=(0.1)^{2}=0.1^{*} 0.1=0.01$
- The probability that a pie is contaminated with a bacterium is 1 in 10
- Prob(pie contaminated) $=0.1$
- What is probability that two pies selected at random are not contaminated?
$\operatorname{Prob}($ both uncontaminated $)=(1-0.1)^{2}=0.9^{*} 0.9=0.81$

Combining probabilities

$\operatorname{Prob}($ neither contaminated $)=(1-0.1)^{2}=0.81$

$$
\text { Prob(both contaminated) }=(0.1)^{2}=0.01
$$

Sum of probabilities
0.82

Combining probabilities

$$
\operatorname{Prob}(\text { neither contaminated })=(1-0.1)^{2}=0.81
$$

$\operatorname{Prob}($ one contaminated $)=(1-0.1) * 0.1+0.1 *(1-0.1)=0.18$

$$
\text { Prob(both contaminated) }=(0.1)^{2}=0.01
$$

Sum of probabilities

Combining probabilities

$$
\operatorname{Prob}(\text { neither contaminated })=(1-0.1)^{2}=0.81
$$

Prob(one contaminated) $=2 *(1-0.1) * 0.1=0.18$

$$
\text { Prob(both contaminated) }=(0.1)^{2}=0.01
$$

Sum of probabilities

Combining probabilities

2 pies
means
3 outcomes $\left[\begin{array}{r}\operatorname{Prob}\left(\text { neither contaminated) }=(1-0.1)^{2}=0.81\right. \\ \text { Prob(one contaminated)=2*(1-0.1)**.1 }=0.18 \\ \text { Prob(both contaminated) }=(0.1)^{2}=0.01\end{array}\right.$

Sum of probabilities 1.0

Probability distributions

- Suppose we looked at 10 pies each with probability $\mathrm{p}=0.1$ of being contaminated
- Now, there are 11 possible outcomes
- $P(0$ contaminated $)=(1-0.1)^{10}$
$-P(1$ contaminated $)=10^{*} 0.1^{*}(1-0.1)^{9}$
$-P(2$ contaminated $)=$......
- $P(10$ contaminated $)=(0.1)^{10}$
- These probabilities form a binomial distribution

Probability distributions

- Suppose we looked at 10 pies each with probability $\mathrm{p}=0.1$ of being contaminated
- Now, there are 11 possible outcomes

- These probabilities form a binomial distribution

The binomial distribution

- Shape of distribution determined by the number of trials, n , and the probability of success, p
- a classic example is tossing a coin n times, with probability of a head $p=0.5$
- For our meat pie example $n=10$ and $p=0.1$

Number of contaminated pies

- Binomial distribution for $\mathrm{n}=10, \mathrm{p}=0.1$

Number of contaminated pies

- Binomial distribution for $n=10, p=0.3$

Number of contaminated pies

- Binomial distribution for $n=10, p=0.6$

Binomial distribution summary

- Defined by Binomial(n,p)
- $\mathrm{n}=$ number of trials
- p = probability of success in each trial
- Can sample from distribution in R
- rbinom(1, 10, 0.1)

```
> rbinom(1,10,0.1)
[1] 1
> rbinom(1,10,0.1)
[1] 0
> rbinom(1,10,0.1)
[1] 2
> rbinom(1,10,0.1)
[1] 2
> rbinom(1,10,0.1)
[1] 0
> rbinom(1,10,0.1)
[1] 2
> rbinom(1,10,0.1)
[1] 2
> rbinom(1,10,0.1)
[1] 0
```


End of refresher

Using binomial to simulate recovery

- Binomial dist defined by
- $\mathrm{n}=$ num trials
- p= probability
- To simulate recovery
- $\mathrm{n}=\mathrm{I}$ (number infecteds)
- $p=\sigma$ (recovery probability)


```
sigma <- 0.2
> I <- 12
> Number.recovering <- rbinom(1, I, sigma)
> Number.recovering
[1] 1
> Number.recovering <- rbinom(1, I, sigma)
> Number.recovering
[1] 3
```

$>$

Same trick for transmission

- Look at the rates
- total rate of transmission is $\beta \mathrm{SI} / \mathrm{N}$
- the rate per susceptible is $\beta \mathrm{I} / \mathrm{N}$

Same trick for transmission

- Look at the rates
- total rate of transmission is $\beta \mathrm{SI} / \mathrm{N}$
- the rate per susceptible is $\beta \mathrm{I} / \mathrm{N}$
- Interpret rate per individual as a probability $p=\beta I / N$ of infection

Using binomial to simulate transmission

- Defined by

Binomial(n,p)

- $\mathrm{n}=\mathrm{S}$ (susceptibles)
- p=ßI/N (prob of infection)

Can sample from distribution in R

- rbinom(1, S , $\beta \mathrm{I} / \mathrm{N}$)

Using binomial to simulate transmission

- Defined by Binomial(n,p)
- $\mathrm{n}=\mathrm{S}$ (susceptibles)
- p=ßI/N (prob of infection)
- Can sample from distribution in R
- rbinom(1, S, $\beta \mathrm{I} / \mathrm{N})$

No. individuals becoming infected in time step

```
> N <- 100
> I <- 50
> S <- 4
beta <- 0.2
> Number.getting.infected <- rbinom(1, S, beta*I/N)
> Number.getting.infected
[1] 0
> Number.getting.infected <- rbinom(1, S, beta*I/N)
> Number.getting.infected
[1] 0
> Number.getting.infected <- rbinom(1, S, beta*I/N)
> Number.getting.infected
[1] 1
```


The impact of randomness

- Variety of outputs for same starting conditions
- in contrast to a deterministic model
- Extinction in outbreaks even if $R_{0}>1$!
- Observed stochasticity decreases when
- population size is large
- initial number of infecteds large

