Probability and the importance of randomness

Deterministic versus stochastic

- All the models so far have been deterministic
- Deterministic models give same output for the same starting conditions
 - no element of randomness or chance

• Stochastic models include an element of chance

Interpreting rates

Let's consider the recovery rate σ

Interpreting σ =0.1...

...if many infecteds, we are happy that 0.1 or 10% of the infected population will recover per time unit

...but, if just a few infecteds, the deterministic interpretation implies that 0.1 of an individual could recover (a little odd!)

Interpreting rates

Let's consider the recovery rate σ

Deterministic models do not handle dynamics at the individual level well!

Stochastic or probabilistic models will help us capture dynamics at the individual level

Thinking probabilistically

• From the perspective of the individual a better interpretation of σ =0.1 is

Each individual has a 10% chance (a probability of 0.1) of recovery in time interval of 1 **

** The relationship between rates and probabilities is actually slightly more complicated but this is a very good approximation for low rates.

How do we capture this?

• We can incorporate probabilities into simulations using a random number generator

Random numbers in R

Example: prob of recovery =0.1

Example: prob of recovery =0.1

Pick a random number between 0 and 1
 O

1

Example: prob of recovery =0.1

2. If less than 0.1, the individual recovers in this time interval

Example: prob of recovery =0.1

2. If less than 0.1, the individual recovers in this time interval

runif(1)

0.070531

Using random numbers in practice

- At each time step, could repeat procedure for each of the I infecteds
- Not the most efficient method
- Use the binomial distribution in R to do all of the I infecteds at once

Refresher on the binomial distribution

- The probability that a pie is contaminated with a bacterium is 1 in 10
 - Prob(pie contaminated)

= 0.1

- The probability that a pie is contaminated with a bacterium is 1 in 10
 - Prob(pie contaminated)

= 0.1

• What is probability that two pies selected at random are contaminated?

Prob(both contaminated) = $(0.1)^2 = 0.1*0.1 = 0.01$

- The probability that a pie is contaminated with a bacterium is 1 in 10
 - Prob(pie contaminated)

= 0.1

• What is probability that two pies selected at random are not contaminated?

Prob(both <u>un</u>contaminated)= $(1-0.1)^2 = 0.9*0.9 = 0.81$

Combining probabilities

Prob(neither contaminated) = $(1-0.1)^2 = 0.81$

Prob(both contaminated) = $(0.1)^2 = 0.01$

Sum of probabilities 0.82

Combining probabilities

Prob(neither contaminated) = $(1-0.1)^2 = 0.81$

Prob(one contaminated) = (1-0.1)*0.1+0.1*(1-0.1) = 0.18

Prob(both contaminated) = $(0.1)^2 = 0.01$

Sum of probabilities 1.0

Combining probabilities

Prob(neither contaminated) = $(1-0.1)^2 = 0.81$

Prob(one contaminated) = $2^{(1-0.1)} = 0.18$

Prob(both contaminated) = $(0.1)^2 = 0.01$

Sum of probabilities 1.0

	Prob(neither contaminated) = $(1-0.1)^2 = 0.81$		
2 pies means 3 outcomes -	Prob(one contaminated)= 2*(1-	0.1)*0.1 = ().18
	Prob(both contaminated)	= (0.1) ² = (0.01

Sum of probabilities 1.0

Probability distributions

- Suppose we looked at 10 pies each with probability p=0.1 of being contaminated
- Now, there are 11 possible outcomes
 - P(0 contaminated)= (1-0.1)¹⁰
 - P(1 contaminated)= 10*0.1*(1-0.1)9
 - P(2 contaminated)= ……
 - -----
 - P(10 contaminated)= (0.1)¹⁰

These probabilities form a binomial distribution

Probability distributions

- Suppose we looked at 10 pies each with probability p=0.1 of being contaminated
- Now, there are 11 possible outcomes

These probabilities form a binomial distribution

- Shape of distribution determined by the number of trials, n, and the probability of success, p
 - a classic example is tossing a coin n times, with probability of a head p=0.5
- For our meat pie example n=10 and p=0.1

Number of contaminated pies

Binomial distribution for n=10, p=0.1

Number of contaminated pies

• Binomial distribution for n=10, p=0.3

Number of contaminated pies

• Binomial distribution for n=10, p=0.6

- Defined by Binomial(n,p)
 - n = number of trials
 - p = probability of success
 in each trial
- Can sample from distribution in R

- rbinom(1, 10, 0.1)

> > rbinom(1,10,0.1) [1] 1 rbinom(1, 10, 0.1)[1] 0 rbinom(1, 10, 0.1)F17 2 rbinom(1,10,0.1) [1] 2 rbinom(1, 10, 0.1)[1] 0 rbinom(1,10,0.1) [1] 2 rbinom(1, 10, 0.1)F17 2 rbinom(1, 10, 0.1)[1] 0

End of refresher

Using binomial to simulate recovery

- Binomial dist defined by
 - n= num trials
 - p= probability
- To simulate recovery
 - n = I (number infecteds)
 - p = σ (recovery probability)


```
> sigma <- 0.2
> I <- 12
>
> Number.recovering <- rbinom(1, I, sigma)
> Number.recovering
[1] 1
>
> Number.recovering <- rbinom(1, I, sigma)
> Number.recovering
[1] 3
>
```

Same trick for transmission

- Look at the rates
 - total rate of transmission is β SI/N
 - the rate per susceptible is $\beta I/N$

Same trick for transmission

- Look at the rates
 - total rate of transmission is β SI/N
 - the rate per susceptible is $\beta I/N$

• Interpret rate per individual as a probability $p=\beta I/N$ of infection

Using binomial to simulate transmission

- Defined by Binomial(n,p)
 - n=S (susceptibles)
 - p=βI/N (prob of infection)
- Can sample from distribution in R
 - rbinom(1, S , β I/N)

Using binomial to simulate transmission

- Defined by Binomial(n,p)
 - n=S (susceptibles)
 - p=βI/N (prob of infection)
- Can sample from distribution in R
 - rbinom(1, S , β I/N)

The impact of randomness

- Variety of outputs for same starting conditions
 - in contrast to a deterministic model
- Extinction in outbreaks even if R₀>1!
- Observed stochasticity decreases when
 - population size is large
 - initial number of infecteds large